Lie algebras and separable morphisms in pro-affine algebraic groups
نویسندگان
چکیده
منابع مشابه
Lie Algebras, Algebraic Groups, and Lie Groups
These notes are an introduction to Lie algebras, algebraic groups, and Lie groups in characteristic zero, emphasizing the relationships between these objects visible in their categories of representations. Eventually these notes will consist of three chapters, each about 100 pages long, and a short appendix. Single paper copies for noncommercial personal use may be made without explicit permiss...
متن کاملDouble Affine Lie Algebras and Finite Groups
We begin to study the Lie theoretical analogs of symplectic reflection algebras for Γ a finite cyclic group, which we call “cyclic double affine Lie algebra”. We focus on type A : in the finite (resp. affine, double affine) case, we prove that these structures are finite (resp. affine, toroidal) type Lie algebras, but the gradings differ. The case which is essentially new is sln(C[u, v] o Γ). W...
متن کاملContractions of Lie Algebras and Algebraic Groups
Degenerations, contractions and deformations of various algebraic structures play an important role in mathematics and physics. There are many different definitions and special cases of these notions. We try to give a general definition which unifies these notions and shows the connections among them. Here we focus on contractions of Lie algebras and algebraic groups. 1. Contractions, degenerat...
متن کاملConstructing algebraic groups from their Lie algebras
A connected algebraic group in characteristic 0 is uniquely determined by its Lie algebra. In this paper an algorithm is given for constructing an algebraic group in characteristic 0, given its Lie algebra. Using this an algorithm is presented for finding a maximal reductive subgroup and the unipotent radical of an algebraic group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2002
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-02-06963-0